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1. Introduction 

Increases of model resolution and ensemble 
size are beneficial for the improvement of 
ensemble performance (Du et al., 1997; 
Buizza and Palmer, 1998a; Buizza et al., 
1998b; Buizza et al., 1999; Richardson, 2001; 
Mullen and Buizza, 2002). However, the 
limited computational resources constrain 
model resolution and ensemble size. Therefore, 
when design an effective operational ensemble 
prediction system, there are two main 
questions we are looking for answers which 
are 1). how many ensemble members we need 
to have better representing forecast 
uncertainties with limited computational 
resources? And 2). what is a relative impact 
for increasing model resolution and increasing 
ensemble size? In this study, the two questions 
above will be analyzed by using Lorenz 96 
model and NCEP GEFS. 

The famous Lorenz models are similar to 
other nonlinear dynamical models of 
atmospheric system. Increasing the ensemble 
size for expanding the sample of numerical 
model’s phase space is extremely expensive 
and complex for operational forecast models, 
however, it is feasible in the Lorenz model due 
to its simple dynamical system. The 
experiment with large ensemble size attained 
from Lorenz model can give a theoretical 
instruction for this study with less cost.  

After all Lorenz model is a simple 
experiment to assimilate the complexity of real 
atmospheric system, so the relative small 
ensemble sizes should be applied to 
complicated operational ensemble forecast 

system to verify the conclusion obtained from 
using Lorenz 96 model. In this study, NCEP 
operational GEFS is employed and ensemble 
size will increase to 80-member.  

 
2. Experimental design 
2.1 Lorenz 96 model and its application 
a. Lorenz 96 model 

The Lorenz 96 model (Lorenz, 1996) is 
given by the following differential equations 

  FXXXX
dt

dX
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i +−−= −−+ 121 )( ,      

Where Ni ,...,2,1=  with cyclic boundary 

condition, i.e., 11 −− = NXX , NXX =0  and 

11 += NXX . The magnitude of the forcing is 

set to 8=F  which is well into the chaotic 
regime (Lorenz, 1996) and the system’s size is 
chosen 1000=N . A fourth-order Runge-Kutta 
integration scheme is employed with a fixed 
time step of 0.05 which corresponds to 
approximately 6-hour in the real atmosphere. 
The first 1000 time steps are used for the 
system to spin-up. 
b. Initial perturbation method 

The analysis is obtained by using ensemble 
Kalman filter (EnKF) method (Evensen, 1994) 
which also provides analysis error covariance 
for the Ensemble Transform with Rescaling 
(ETR) initial perturbation method.  

Initial perturbations are generated by using 
ETR based perturbation (Wei et al., 2006 and 
2008) with 10, 20, 40, 60, 80, 100 and 200 
ensemble members in this experiment. In ETR 
scheme, the basic perturbations for best 
analysis are generated from 6-hour forecasts 
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on through an ensemble transformation T  as 
follows 

a f=Z Z T . 
And then the perturbations should proceed to 
be centralized and rescaled. 
2.2 Real atmospheric (NCEP GEFS) model 
and its application 

The current NCEP operational GEFS (based 
on GFS v8.0) runs 20 ensemble member 
forecasts and one control forecast at T190 
horizontal resolution, 28 hybrid vertical levels 
4 times (00UTC, 06UTC, 12UTC and 18UTC) 
per day. The forecast output data is 
interpolated to 1°×1° lat/lon resolution from 0 
to 384 forecast hours at 6-hour intervals. The 
initial perturbations are generated by ETR 
method. A Stochastic Total Tendency 
Perturbation (STTP) scheme is applied in the 
forecast integration to simulate random model 
errors.  

The impact of different ensemble sizes (80, 
60, 40, 20, 10 and 5) on NCEP GEFS 
performance is studied in this paper. In order 
to consider both of running relative larger 
ensemble size and computation costs, the 
GEFS model resolution is reduced to T126 for 
this experiment. The experiment runs from 
December 1st, 2009 to January 31st, 2010, 
longer forecasts are made once per day, ETR 
cycling are every 6 hours. At each cycle, 
orthogonalization and centration are carried 
out for all 80 perturbations. Verifications are 
processed to 60, 40, 20, 10 and 5 ensemble 
members which are randomly chosen from 80-
member.  

 
3. Impact of ensemble size on ensemble skill 
in ideal model 

To assess the performance of the Lorenz 96 
model experiments, RMS error of ensemble 
mean (RMSE) and ensemble spread (SPREAD) 
(Toth et al., 2003) are used (Figs.1). It shows 

that 1). The SPREAD is closer to RMSE; 2). 
The forecast error is saturated at about 60 
integrated time steps (corresponding to 15 
days, 6 hours for each time step). By 
comparing RMSE for different ensemble sizes, 
Fig.1 shows that the improvement is more 
significant for enlarging the ensemble size 
from 10 to 20 (double) and from 20 to 40 
(double) than for further increasing the 
ensemble size. This conclusion is corroborated 
in Figs.2 by using 200 members as an 
optimum reference to calculate RMSE ratios 
to other memberships. It should be noticed that 
the differences of all ensemble sizes are quite 
small at early lead-time (less than day 3), and 
at longer lead time, the 99% errors could be 
represented by 40 ensemble members only, but 
96% errors are only represented by 10 
ensemble members if  assuming 200 members 
is a perfect ensemble size. Continuous Ranked 
Probabilistic Score (CRPS; Toth et al., 2003) 
is used to measure the reliability and 
resolution of ensemble based probabilistic 
forecast. The tendencies of CRPS curves 
shown in Figs.3 are similar to RMSE. 
However, for detail shown in Fig.4, the 
improvements of increasing ensemble size on 
the representativeness of errors are larger than 
RMSE shown in Fig.2. 10-member represents 
less than 96% errors at short lead times, which 
decreases to 92% for long lead times. When 
the sizes increase to more than 40 members, 
the ratios as a function of lead time have few 
changes which maintain more than 98% errors 
for all lead times, and for further increasing 
ensemble sizes, this percentage improves more 
obvious than RMSE ratios. 
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Fig.1 RMSE and SPREAD for different 
ensemble members.  
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Fig.2 RMSE ratios of 200-member ensemble 
mean to others.  
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Fig.3 CRPS for different ensemble members. 
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Fig.4 CRPS ratios of 200-member to other 
sizes. 

 
4. Impact of ensemble size on ensemble skill 
in real atmospheric model 

    The benefits of increasing ensemble size are 
evaluated for 500hPa geopotential height over 
the NH extra-tropics based on NCEP standard 
probabilistic verification package (Zhu et al., 
1996; Zhu and Toth, 2008) which includes 
RMSE, SPREAD, and CRPS.  
4.1 RMSE and SPREAD 

In general, ensemble SPREAD is equal to 
RMSE for a perfect forecast ensemble system 
in which the analysis is statistically 
indistinguishable from ensemble members. 
Fig.5 shows that the increases of ensemble 
sizes from 5 to 10, from 10 to 20 and from 20 
to 40 produce statistically significant 
improvements of RMSE at all lead times. 
However, the improvements are very small 
when further increasing the ensemble size. 
SPREAD is smaller than RMSE and it isn’t 
sensitive to increase ensemble sizes as RMSE, 
because increasing ensemble size have slightly 
effect on capturing the model error which 
mainly cause SPREAD underestimation. Fig.6 
shows whether the differences of RMSE for 
ensemble sizes are statistical significance. A 
vertical bar represents a 95% of standard 
deviation. For example, the top panel shows 
the difference between 10 and 20 ensemble 
members. A positive value means 10 members 
have larger RMSE value than 20 members. 
The bars don’t overlap with zero line which 
indicates differences significant at the 5% 
confidence level. RMSE for 20 members 
differs significantly from 40 members for 
short lead times (about less than 7 days), but 
the difference between 40 and 80 isn’t 
significant for all lead times.  
4.2 CRPS 

The comparison of CRPS in the Fig.7 shows 
that the increase of ensemble size improves the 
probabilistic forecast skill, especially when the 
size is smaller than 40-member. The 
improvement is significantly larger than the 
forecast skill for ensemble mean evaluation. 
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This result has been confirmed by statistical 
significance test (Fig.8). The differences of 
CRPS for 10-20, 20-40 and 40-80 ensemble 
members are all significant at the 5% 
confidence level for all lead times which is 
different from ensemble mean verification, 
although they decrease greatly when the sizes 
increase from 20 to 40 and from 40 to 80. 
 

 
Fig.5 RMSE and SPREAD of different 
ensemble sizes for 500hPa geopotential height 
from 1 Dec. 2009 to 31 Jan. 2010 over the NH 
extra-tropics. 

 
Fig.6 The differences of RMSE for 10-20, 20-
40 and 40-80 ensemble members respectively. 
The Blue bars around the difference (blue line) 
are 95% confidence intervals. 

 
Fig.7 CRPS of different ensemble sizes for 
500hPa geopotential height from 1 Dec. 2009 
to 31 Jan. 2010 over the NH extra-tropics. 

 
Fig.8 The differences of CRPS for 10-20, 20-
40 and 40-80 ensemble members respectively. 
The Blue bars around the difference (blue line) 
are 95% confidence intervals. 

 
5. The relative impact of increasing model 
resolution and increasing ensemble size in 
real atmospheric model  

By comparing 70 members at T126L28 
resolution with 20 members at T190L28 
resolution which are using the equivalent 
computation resource and the same model 
physics, the relative impact for both increasing 
resolution and ensemble size has been 
assessed. All of the comparisons for PAC and 
CRPS scores (the top figures of Figs.9 and 10) 
seem similar that increasing model resolution 
(T190) is more (less) beneficial than increased 
ensemble size for short (long) lead times. The 
statistical significance testing (the bottom 
figures of Figs.9 and 10) confirms this 
conclusion. Table 1 summarizes the statistical 
significant forecast time at which one forecast 
configuration performs significantly better 
than the other one by using 95% confidence 
interval. We can clearly find that the 
resolution plays more important than ensemble 
size when the forecast time is less than 5d, 
however, large ensemble size is significantly 
superior to higher resolution when the forecast 
time exceed 12d, which means more ensemble 
members will benefit the extend forecast. 
Therefore, it is a trade-off between these 
resolution and ensemble membership 
configuration. The optimal configuration may 
be depended on the practical application. In 
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this experiment period, for 6-10 days forecast 
lead times, there is no significant difference 
between increasing resolution and membership. 
In NCEP, a higher resolution may be 
considered to improve 1-5 days forecast since 
CMC’s ensemble has been implemented in the 
NAEFS (The North American Ensemble 
Forecast System) to have more membership. 
Meanwhile, lagged ensemble could be another 
optimal option by constructing week-2 or 
extended range forecast.  

 
Fig.9 PAC (top) for 70T126 (black) and 
20T190 (red) for NH extra-tropics 500hPa 
geopotential height from  Dec. 1st, 2009 to Jan. 
31st, 2010. The vertical bars around the RMSE 
difference (T190 – T126, solid line) are 95% 
confidence intervals (bottom). 

 
Fig.10 As in Fig.9 but for CRPS. 
 
Table 1: Summary of statistical significant 
forecast time for 20T190 and 70T126 

 PAC CRPS 
20T190 1-5d 1-5d 
70T126 13-16d 12-16d 

 
6. Conclusions   

The numerical prediction centers around the 
world face the same questions when they 

develop (or upgrade) an ensemble forecast 
system. How many ensemble members do we 
need to have better representing forecast 
uncertainties with the limited computational 
resources? What is relationship between 
resolution and ensemble membership? This 
paper starts from Lorenz 96 model using 
ensemble transform with rescaling (ETR) 
initial perturbation method for over 200 
members, then tests NCEP global ensemble 
forecast system (GEFS) with different 
ensemble size and resolution. The impact of 
various ensemble sizes is studied using 
different verification methods from December 
1st, 2009 to January 31st, 2010 for 500hPa 
geopotential height field over the NH extra-
tropics. Results indicate increasing ensemble 
size is beneficial to improve skill of ensemble, 
especially for small ensemble size (less than 
40-member), and there is still significant 
improvement on the skill of probabilistic 
forecast with further increasing ensemble 
members. The relative benefits of T126L28 
model with 70 members and T190L28 model 
with 20 members which have equivalent 
computing cost are also compared. The 
comparison of the two configurations, from 
the PAC, CRPS scores and statistical 
significant testing of their difference, indicates 
that increasing model resolution is more (less) 
beneficial than increasing ensemble size for 
short (long) lead times. 
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